Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: Theory and application to atmospheric inversions and data assimilation
نویسندگان
چکیده
This paper provides a detailed theoretical analysis of methods to approximate the solutions of high-dimensional (> 10) linear Bayesian problems. An optimal low-rank projection that maximizes the information content of the Bayesian inversion is proposed and efficiently constructed using a scalable randomized SVD algorithm. Useful optimality results are established for the associated posterior error covariance matrix and posterior mean approximations, which are further investigated in a numerical experiment consisting of a large-scale atmospheric tracer transport source-inversion problem. This method proves to be a robust and efficient approach to dimension reduction, as well as a natural framework to analyze the information content of the inversion. Possible extensions of this approach to the non-linear framework in the context of operational numerical weather forecast data assimilation systems based on the incremental 4D-Var technique are also discussed, and a detailed implementation of a new Randomized Incremental Optimal Technique (RIOT) for 4D-Var algorithms leveraging our theoretical results is proposed.
منابع مشابه
On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملAn application of differential transform method for solving nonlinear optimal control problems
In this paper, we present a capable algorithm for solving a class of nonlinear optimal control problems (OCP's). The approach rest mainly on the differential transform method (DTM) which is one of the approximate methods. The DTM is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. Utilizing this approach, the optimal co...
متن کاملهمجوشی دادههای موج در خلیج فارس با مدل طیفی ویوواچ3
The major problems in modeling of different oceanographic and meteorological parameters are limitations in numerical methods and human incomplete knowledge in physical processes involved. As a result, significant differences between the results of these models and in situ observations of these parameters might exist. One of the powerful solutions for decreasing the forecast errors in the models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.06431 شماره
صفحات -
تاریخ انتشار 2016